skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Feng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The polyketide synthases (PKSs) in microbes and the cytoplasmic fatty acid synthases in humans (FASs) are related enzymes that have been well studied. As a result, there is a paradigm explaining in general terms how FASs repeatedly use a set of enzymatic domains to produce simple fats, while PKSs use the domains in a much more complex manner to produce pharmaceuticals and other elaborate molecules. However, most animals also have PKSs that do not conform to the rules described in microbes, including a large family of enzymes that bridge fatty acid and polyketide metabolism, the animal FAS-like PKSs (AFPKs). Here, we present the cryoelectron microscopy structures of two AFPKs from sea slugs. While the AFPK resemble mammalian FASs, their chemical products mimic those of PKSs in complexity. How then does the architecture of AFPKs facilitate this structural complexity? Unexpectedly, chemical complexity is controlled not solely by the enzymatic domains but is aided by the dynamics of the acyl carrier protein (ACP), a shuttle that moves intermediates between these domains. We observed interactions between enzyme domains and the linker-ACP domain, which, when manipulated, altered the kinetic properties of the enzyme to change the resulting chemical products. This unveils elaborate mechanisms and enzyme motions underlying lipid and polyketide biochemistry across the domains of life. 
    more » « less
  2. Abstract Developing suitable cathodes of sodium‐ion batteries (SIBs) with robust electrochemical performance and industrial application potential is crucial for the commercialization of large‐scale stationary energy storage systems. Layered sodium transition metal oxides, NaxTmO2(Tm representing transition metal), possessing considerable specific capacity, high operational potential, facile synthesis, cost‐effectiveness, and environmentally friendly characteristics, stand out as viable cathode materials. Nevertheless, the prevailing challenge of air‐induced degradation in most NaxTmO2significantly increases costs associated with production, storage, and transportation, coupled with a rapid decay in reversible capacity. This inherent obstacle inevitably impedes the advancement and commercial viability of SIBs. To address this challenge, it is essential to decode the chemistry of degradation caused by air exposure and develop protective strategies accordingly. In this review, a comprehensive and in‐depth understanding of the fundamental mechanisms associated with air‐induced degradation is provided. Additionally, the current state‐of‐the‐art effective protective strategies are explored and discuss the corresponding sustainability and scalability features. This review concludes with an outlook on present and future research directions concerning air‐stable cathode materials, offering potential avenues for upcoming investigations in advancing alkali metal layered oxides. 
    more » « less
  3. Entangled multiphoton sources are essential for both fundamental tests of quantum foundations and building blocks of contemporary optical quantum technologies. While efforts over the past three decades have focused on creating multiphoton entanglement through multiplexing existing biphoton sources with linear optics and postselections, our work presents a groundbreaking approach. We observe genuine continuous-mode time-energy-entangled W-class triphotons with an unprecedented production rate directly generated through spontaneous six-wave mixing (SSWM) in a four-level triple-Λ atomic vapor cell. Using electromagnetically induced transparency and coherence control, our SSWM scheme allows versatile narrowband triphoton generation with advantageous properties, including long temporal coherence and controllable waveforms. This advancement is ideal for applications like long-distance quantum communications and information processing, bridging single photons and neutral atoms. Most importantly, our work establishes a reliable and efficient genuine triphoton source, facilitating accessible research on multiphoton entanglement. 
    more » « less
  4. Realistic simulation of the intricate wing deformations seen in flying insects not only deepens our comprehension of insect fight mechanics but also opens up numerous applications in fields such as computer animation and virtual reality. Despite its importance, this research area has been relatively under-explored due to the complex and diverse wing structures and the intricate patterns of deformation. This paper presents an efficient skeleton-driven model specifically designed to real-time simulate realistic wing deformations across a wide range of flying insects. Our approach begins with the construction of a virtual skeleton that accurately reflects the distinct morphological characteristics of individual insect species. This skeleton serves as the foundation for the simulation of the intricate deformation wave propagation often observed in wing deformations. To faithfully reproduce the bending effect seen in these deformations, we introduce both internal and external forces that act on the wing joints, drawing on periodic wing-beat motion and a simplified aerodynamics model. Additionally, we utilize mass- spring algorithms to simulate the inherent elasticity of the wings, helping to prevent excessive twisting. Through various simulation experiments, comparisons, and user studies, we demonstrate the effectiveness, robustness, and adaptability of our model. 
    more » « less
  5. Abstract Animals synthesize simple lipids using a distinct fatty acid synthase (FAS) related to the type I polyketide synthase (PKS) enzymes that produce complex specialized metabolites. The evolutionary origin of the animal FAS and its relationship to the diversity of PKSs remain unclear despite the critical role of lipid synthesis in cellular metabolism. Recently, an animal FAS-like PKS (AFPK) was identified in sacoglossan molluscs. Here, we explore the phylogenetic distribution of AFPKs and other PKS and FAS enzymes across the tree of life. We found AFPKs widely distributed in arthropods and molluscs (>6300 newly described AFPK sequences). The AFPKs form a clade with the animal FAS, providing an evolutionary link bridging the type I PKSs and the animal FAS. We found molluscan AFPK diversification correlated with shell loss, suggesting AFPKs provide a chemical defense. Arthropods have few or no PKSs, but our results indicate AFPKs contributed to their ecological and evolutionary success by facilitating branched hydrocarbon and pheromone biosynthesis. Although animal metabolism is well studied, surprising new metabolic enzyme classes such as AFPKs await discovery. 
    more » « less